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Scientific Discovery through Advanced Computing
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High Energy Physics and Computing

Scales

» HEP science covers a number of scales (table-top to the most complex
experiments in the world) and computing models (laptop to world-wide grid)

HEP Frontiers

» Energy Frontier (large experiments at colliders, O(1000) researchers/expt)
» Intensity Frontier (small/medium/large, O(10-1000) researchers/expt)

» Cosmic Frontier (small/medium/large scale, O(10-1000) researchers/expt)

Data

» Most experimental data requires fine-grained, ‘event’ style analysis

» Data pipelines are complex and need to be run many times (individual
campaigns can last for months)

» Scale of data — 10s of TB to 100s of PB/year (Exabyte already)
» Multiple 10 requirements

ASCR/HEP Exascale Requirements Review (good place for details)
» http://arxiv.org/abs/1603.09303, also http://hepcce.org/resources/reports/



http://hepcce.org/resources/reports/

Computing Paradigm (Cosmic and Energy Frontiers)

Simulated Data: 1) Large-scale simulation of the Universe, 2) Synthetic catalogs,
3) Statistical inference (cosmology); Analysis: Comparison with actual data

COMPOSITION OF THE COSMOS

Mock Galaxies

Elementary
Particles

| I Il
Three Families of Matter

Simulated Data: 1) Event generation (lists of particles and momenta), 2)
Simulation (interaction with detector), 3) Reconstruction (presence of particles
inferred from detector response); Analysis: Comparison with actual data



Different Flavors of Computing

 High Performance Computing (‘PDEs’)
» Parallel systems with a fast network
» Designed to run tightly coupled jobs
» “High performance” parallel file system
» Batch processing

e Data-Intensive Computing (‘Interactive Analytics’)

» Parallel systems with balanced I/O
» Designed for data analytics Want more of this — (“Science Cloud”),
but don’t yet (really) have it

» System level storage model (Data-Intensive Scalable Computing: DISC)

» Fast Interactive processing

e High Throughput Computing (‘Events’/‘Workflows’)
» Distributed systems with “slow” networks
» Designed to run loosely coupled jobs
» System level/Distributed data model
» Batch processing
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Timing Example: LSST and Computing

i

e LSST computing (pipeline + analysis)

» Estimates of initial computing needs are unclear, |
ranging from 150-350 TFlops/year -

» Initial storage needs are ~PB, growing linearly Byl
» Based on this, we would want (at least) the #1 ‘

machine in the Top 500 in 2006

» In 2022 there may be O(1000-10,000) such
machines in the US alone!

» Storage requirement is already ‘trivial’, LSST is
NOT ‘Big Data’
e So what’s the problem?

» Analyses will be complex (and there will be
multiple reprocessing steps)

» These tasks will expand to fill available
computational space

, : 300 TFlops/10PB
} )
Programming models may be very different from 10KW in 2020

those in use today (Projection)




Computing Science Drivers: Cosmology
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® Massive increase in
sensitivity of cosmic
microwave
background (CMB)
observations

® Cross-correlation
with galaxy surveys

® New era of CMB
modeling/simulations

® Massive increase
in volume of
galaxy surveys

® Next-generation
galaxy clustering
simulations

® Multi-physics
codes needed to
meet accuracy

100 150 200 requirements



Fidelity/Complexity

Cosmology: Simulation Frontiers

® Next-generation
surveys
® End-to-end, multi-
Petascale Exascale orobe survey-scale
simulations
® Multiple cross-
® Second-generation calibrated probes
surveys e UQ-enabled cosmic
Terascale e Multi-probe calibration frameworks
simulations
® Few precision probes
® |ntermediate accuracy
parameter estimation

® First-generation
surveys

® Single-probe
simulations

Simulation Volume



Computing Requirements: Energy Frontier

 HEP Requirements in computing/storage will scale up by ~50X over 5-10 years
» Flat funding scenario fails — must look for alternatives!
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What to Do? Many White Papers and Reports —

HIGH ENERGY PHYSICS
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SPONSORED BY THE OFFICE OF ADVANCED SCIENTIFIC'COMPUTING RESEARCH

HiGH ENERGY PHYSICS FORUM FOR COMPUTATIONAL EXCELLENCE:
WORKING GROUP REPORTS

I. APPLICATIONS SOFTWARE
II. SOFTWARE LIBRARIES AND TOOLS
ITI. SYSTEMS

Lead Editors: Salman Habib! and Robert Roser? (HEP-FCE Co-Directors)

Applications Software Leads: Tom LeCompte!, Zach Marshall®
Software Libraries and Tools Leads: Anders Borgland®, Brett Viren®
Systems Lead: Peter Nugent?

Applications Software Team:
Makoto Asai?, Lothar Bauerdick?, Hal Finkel', Steve Gottlieb®, Stefan Hoeche?,
Tom LeCompte!, Zach Marshall®, Paul Sheldon”, Jean-Luc Vay®

Software Libraries and Tools Team:
Anders Borgland?, Peter Elmer®, Michael Kirby?, Simon Patton®, Maxim Potekhin?,
Brett Viren®, Brian Yanny?

Systems Team:
Paolo Calafiura®, Eli Dart®, Oliver Gutsche?, Taku Izubuchi®, Adam Lyon?,
Peter Nugent®, Don Petravick?

Planning the Future of U.S. Particle

Physics

High Energy Physics and Nuclear Physics Network Requirements

Report of the 2013 Community Summer Study

U Florida
Argonne
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U Washington
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LBNL
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Chapter 9: Computing

HEP and NP Network Requirements Review
Final Report

/ L. A. T. Bauerdick, S. Gottlieb, G. Bell, K. Bloom, T. Blum, D. Brown, M. Butlex Conducted August 20-22, 2013
' E. Cormier, P. Elmer, M. Ernst, I. Fisk, G. Fuller, R. Gerber, S. Habib, M. Hildreth, S. Hoeche
C. Joshi, A. Mezzacappa, R. Mount, R. Pordes, B. Rebel, L. Reina, M. C. Sanchez, J. Shank,
A. Szalay, R. Van de Water, M. Wobisch, S. Wolbers
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Are Supercomputers a Universal Solution?

 Dealing with supercomputers is painful!
-
e HPC programming is tedious (MPI, OpenMP, CUDA, OpenCL, —) & \

 Batch processing ruins interactivity

* File systems corrupt/eat your data

o Software suite for HPC work is very limited
 Analyzing large datasets on HPC systems is painful
e HPC experts are not user-friendly

e Downtime and mysterious crashes are common

e Ability to ‘roll your own’ is limited

Running Jobs Queued Jobs Reservations

Total Queued Jobs: 172 , \
Job Id ¢ Project < Score ~ Walltime < Queued Time ¢ Queue < Nodes <
307941 SkySurvey 8351.7 1d 00:00:00 5d 01:10:03 prod-capability 32768
307942 SkySurvey 8350.5 1d 00:00:00 5d 01:09:42 prod-capability 32768
309793 NucStructReact_2 7069.0 01:00:00 1d 19:13:34  prod-capability 32768
309794 NucStructReact_2 7065.1 01:00:00 1d 19:12:28 prod-capability 32768
309795 NucStructReact_2 7056.8 01:00:00 1d 19:10:04 prod-capability 32768
309271 LatticeQCD_2 6121.1 03:00:00 3d 03:40:34  prod-capability 12288
309314 LatticeQCD_2 5036.1 04:50:00 2d 22:51:59 prod-capability 12288
309315 LatticeQCD_2 5034.8 03:00:00 2d 22:51:38 prod-capability 12288
309316 LatticeQCD_2 5034.0 04:50:00 2d 22:51:24 prod-capability 12288
309317 LatticeQCD_2 5033.0 03:00:00 2d 22:51:08 prod-capability 12288
309318 LatticeQCD_2 5032.6 04:50:00 B 2d 22:51:01  prod-capability 12288 y




Where is Computing Headed?

* Evolution of HPC Systems Decadal Change in Flops/Byte for the Top 500 #1 System
» Optimized for raw Flops | 125 Pflops |
» Poor Memory to Flops ratio 100 eskpertomanee: 07 eoe >
» Poor CommV/IO to Flops ratio
» Insufficient storage 10} X100
» Multiple technology ‘swim lanes’ ) ooy 41X S
» Rapid node architecture evolution , | S FPRRRSSTTEEE
» Major lag in software “Gapiops| 17 100MB/core
development X107 *
e Mitigation Strategies Mf o
» Rethink computer architecture 0 Phytes
and design for science use cases 2007 | 2012 | 017

v

v

v

Storage caches with direct
connectivity to compute nodes

Faster/fatter data pipes to
compute platforms

Software strategies for portability

Year

Example of current supercomputer evolution:
driven by a number of imperatives — economic
and technological — leading to specialized nodal
architectures (end of the ‘PC’ model)



Exascale Computing Project

Major DOE SC and NNSA joint project to arrive at a scientifically usable
architecture for exascale computing in the early 2020°’s — largest science
project within DOE

What is an exascale advanced architecture?
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Connectivity Example: Edge Services

A . O .,

User
Input
+ : Dynamic/
Data Static
Input Edge Server Scheduler
and
Output

Compute
Environment

Edge Server
Storage
System

'---------

Edge Service —*— Data Service Compute Facility

Edge service design must consider a number of factors; security, resource
flexibility, interaction with HPC schedulers, external databases,
requirements of the user community — modern supercomputers are once
again ‘strategic’ resources, not a ‘pile of PCs’!



Boundary Conditions

e What’s the Problem?

» Even if solutions can be designed in principle, the resources needed to
Implement them are (usually) not available

» Despite all the evidence of its power, computing still does not get high
enough priority compared to building “things”

» In part this is due to the success of computing — progress in this area is
usually much faster than in others, so one can assume that computing
will just happen (Moore’s Law) — to what extent is this still true”?

e Large-Scale Computing Available to Scientists
» Lots of supercomputing (HPC) available and more on the way

» Not enough data-intensive scalable computing (DISC) available to users,
hopefully this will change over time

» Publicly funded HTC/Grid computing resources cannot keep pace with
demand

» Commercial space (Cloud) may be a viable option but is not issue-free
» Storage, networking, and curation are major problems (sustainability)



“Data Meets HPC” — Basic Requirements

Software Stack: Ability to run arbitrarily complex software stacks on
HPC systems (software management)

Resilience: Ability to handle failures of job streams, still rudimentary
on HPC systems (resilience)

Resource Flexibility: Ability to run complex workflows with changing
computational ‘width’, possible but very clunky (elasticity)

Wide-Area Data Awareness: Ability to seamlessly move computing
to the data (and vice versa where possible); access to remote
databases and data consistency via well-designed and secure edge
services (integration)

Automated Workloads: Ability to run large-scale coordinated
automated production workflows including large-scale data motion
(global workflow management)

End-to-End Simulation-Based Analyses: Ability to run analysis
workflows on simulations using a combination of in situ and offline/
co-scheduling approaches (hybrid applications)



Summary

e |s HPC the solution we have been waiting for?
» Not quite, but —

» It might be a solution we can live with (provided software upgrades are
doable and straitjacketing is acceptable)

» It might be a (partial) solution we will have to live with (power, funding)

e Compute/data model evolution

» What happens when compute is free but data motion and storage are
both expensive?

» Investment in appropriate networking infrastructure and storage

» Major refactoring of software, especially where the computational payload
meets the compute platform

e Will require nontraditional cross-office agreements
» Individual experiments too fine-grained, need a higher-level arrangement
» Will require changes in ASCR'’s computing vision (“superfacility” variants)
» ASCR is not a “support science” office, prepare for the bleeding edge!



